Regularized Regression: A New Tool for Investigating and Predicting Tree Growth

نویسندگان

چکیده

Neighborhood models have allowed us to test many hypotheses regarding the drivers of variation in tree growth, but require considerable computation due empirically supported non-linear relationships they include. Regularized regression represents a far more efficient neighborhood modeling method, it is unclear whether such an ecologically unrealistic model can provide accurate insights on growth. Rapid becoming increasingly important as ecological datasets grow size, and may be essential when using predict growth beyond sample plots or into future. We built novel regularized investigated reached same conclusions commonly used model, how influenced by species identity neighboring trees. also evaluated ability both interpolate trees not included fitting dataset. Our replicated most classical model’s inferences fraction time without high-performance computing resources. found that methods could out-of-sample method making predictions varied among focal species. particularly for comparing because automates process selection handle correlated explanatory variables. This feature means select potential variables (e.g., climate variables) thereby streamline development model. Both future research must determine extrapolated experiencing conditions. Overall, we conclude complement investigation represent valuable tool advancing this field toward prediction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Nonparametric Regression for Longitudinal Data

In many area of medical research, a relation analysis between one response variable and some explanatory variables is desirable. Regression is the most common tool in this situation. If we have some assumptions for such normality for response variable, we could use it. In this paper we propose a nonparametric regression that does not have normality assumption for response variable and we focus ...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Contour regression: A distribution-regularized regression framework for climate modeling

Regression methods are commonly used to learn the mapping from a set of predictor variables to a continuousvalued target variable such that their prediction errors are minimized. However, minimizing the errors alone may not be sufficient for some applications, such as climate modeling, which require the overall predicted distribution to resemble the actual observed distribution. On the other ha...

متن کامل

Spectral Regression : a Regression Framework for Efficient Regularized Subspace Learning

Spectral methods have recently emerged as a powerful tool for dimensionality reduction and manifold learning. These methods use information contained in the eigenvectors of a data affinity (i.e., item-item similarity) matrix to reveal the low dimensional structure in the high dimensional data. The most popular manifold learning algorithms include Locally Linear Embedding, ISOMAP, and Laplacian ...

متن کامل

A new tool for investigating small RNA function.

Small noncoding RNAs are important regulatorymolecules in numerous developmental and stress response pathways in eukaryotes. Hundreds of microRNAs (miRNAs) and hundreds of thousands of endogenous small interfering RNAs have been identified from dozens of plant species, but regulatory functions are known for only a small number of families. In addition, improvements in highthroughput sequencing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Forests

سال: 2021

ISSN: ['1999-4907']

DOI: https://doi.org/10.3390/f12091283